Shelby Lockhart, PhD

➡ s.lockhart@alumni.wfu.edu

Education

Aug 2016 – May 2023	University of Illinois at Urbana-Champaign , Urbana-Champaign, IL, USA Doctor of Philosophy (PhD) in Computer Science Advisor: Luke N. Olson
	Thesis Title: Reducing Communication Bottlenecks in Iterative Solvers Research Areas: Scientific Computing and High Performance Computing Cumulative GPA: 3.71/4.00
Aug 2012 – May 2016	Wake Forest University, Winston-Salem, NC, USA Bachelor of Science (BS) in Mathematics Double majored in Computer Science Cumulative GPA: 3.72 / 4.00, Magna Cum Laude

Research Experience

Scientific Computing Group, Dept. of CS, University of Illinois at Urbana-Champaign

Graduate Research Assistant

Jan 2021 - May 2023 Project: PSAAP Grant - Center for Exascale-enabled Scramjet Design Advisor: Luke N. Olson

- Designed and implemented models for communication on heterogeneous architectures, demonstrating the importance of locality-aware communication strategies in achieving optimal distributed communication performance with MPI.
- Designed an optimal point-to-point communication strategy for the unstructured-mesh boundary exchanges for use within the *MIRGE-Com* framework.
- Research Areas: performance modeling, GPU data movement, CUDA-aware, GPUDirect, MPI, locality-aware parallel communication, sparse matrix operations, unstructured-meshes, large-scale multi-physics simulations, CUDA

Aug 2017 - May 2020 Project: ExxonMobil Research Grant

Advisor: Luke N. Olson

- Performed a performance analysis of enlarged Krylov methods at scale.
- Developed optimal locality-aware communication for use in the sparse matrix-block vector product of enlarged Krylov methods and implemented within the RAPtor solver framework, demonstrating 60x-80x speedup over standard distributed communication practices.
- Research Areas: SPD linear systems of equations, Krylov methods, performance modeling, locality-aware parallel communication, MPI, sparse matrix operations, parallel linear algebra

Scientific Computing Group, Computation, CASC, Lawrence Livermore National Laboratory *Predictive Science Academic Alliance Program III Student Intern*

May 2021 - Aug 2021 Project: Low Synchronous AA Advisors: Carol S. Woodward and David J. Gardner

- Implemented low synchronization orthogonalization methods within the SUNDIALS codebase for use within Anderson Acceleration.
- Analyzed the parallel performance of low synchronization orthogonalization methods outside of and within

the context of Anderson Acceleration, demonstrating up to 8x speedup over standard orthogonalization techniques at large-scales.

• Research Areas: Nonlinear systems of equations, fixed point iterations, Anderson acceleration, orthogonalization, MPI, collective communication, parallel linear algebra, portable HPC software, CUDA

Scientific Computing Group, Computation, CASC, Lawrence Livermore National Laboratory *Computation Scholar Program Graduate Intern*

Jun 2020 - Aug 2020 Project: Low Synchronous AA Advisors: Carol S. Woodward and David J. Gardner

- Researched low synchronization orthogonalization methods and their potential use within Anderson Acceleration.
- Research Areas: Nonlinear systems of equations, fixed point iterations, Anderson acceleration, orthogonalization, MPI, collective communication, parallel linear algebra, portable HPC software, CUDA

 Jun 2018 - Aug 2018
 Project: NVECTOR_OPENMPDEV
 Advisors: Carol S. Woodward and David J. Gardner

- Implemented an OpenMP 4.5 N Vector within the SUNDIALS codebase for offloading computation to GPUs.
- Research Areas: OpenMP, GPU-based compute, portable HPC software, node-level parallelism

Computational and Applied Mathematics Group, Oak Ridge National Laboratory *Department of Energy HERE Graduate Intern*

Jun 2017 - Aug 2017 | Project: Reduced Order Modeling for Finite Element Methods Advisor: Clayton Webster

• Research Areas: Finite element methods, reduced order modeling, partial differential equations

Scientific Computing Group, Dept. of CS, University of Illinois at Urbana-Champaign

Independent Study Research

Aug 2016 - May 2017Project: Analysis of the Universal Number FormatAdvisor: Michael Heath

• Research Areas: Rounding error, truncation error, numerical precision, floating point

Dept. of Mathematics, Wake Forest University

Undergraduate Thesis Research

Aug 2015 - May 2016Project: Limited-Memory Trust-Region Methods for Sparse Relaxation
Advisor: Jennifer Erway

• Research Areas: Large-scale constrained optimization, trust-region methods, limited-memory quasi-Newton methods, BroydenFletcher-Goldfarb-Shanno update

Cyber and Information Security Research Group, Oak Ridge National Laboratory

Department of Energy SULI Intern

Jun 2015 - Aug 2015Project: STUCCO (Situation and Threat Understanding by Correlating Contextual
Observations)Advisor: Robert Bridges

• Research Areas: NLP, supervised training for machine learning, cyber security

Teaching Experience

Dept. of CS at University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA *Graduate Teaching Assistant*

Aug 2020 - Dec 2020	Course: Numerical Analysis, CS 450	Professor: Luke N. Olson	
Jan 2019 - May 2019	Course: Numerical Methods for PDEs, CS 555	Professor: Paul Fischer	
Jan 2017 - May 2017	Course: Numerical Analysis, CS 450	Professor: Paul Fischer	
Aug 2016 - Dec 2016	Course: Numerical Methods, CS 357	Professor: Andreas Kloeckner	
Dept. of CS at Wake Forest University , Winston-Salem, NC, USA <i>Teaching Assistant</i>			
Aug 2015 - May 2016	Course: Computer Organization (using MIPS assembly)	Professor: Pete Santago	
Jan 2015 - May 2015	Course: Introduction to Computer Science (using Python)	Professor: Pete Santago	

Awards and Achievements

Apr 2023	Sydney Fernbach Fellowship , Finalist Lawrence Livermore National Laboratory
Mar 2023	Selected to attend Rising Stars in Computational and Data Sciences Oden Institute, Sandia National Laboratory, Lawrence Livermore National Laboratory
Oct 2022	ACM/IEEE CS George Michael Memorial HPC Fellowship, Honorable Mention ACM, IEEE Computer Society, SC Conference
Aug 2018	Outstanding Poster Presentation , Summer Student Poster Symposium Lawrence Livermore National Laboratory
Aug 2016	Saburo Muroga Endowed Fellowship University of Illinois at Urbana-Champaign
May 2016	John W. Sawyer Prize in Computer Science Wake Forest University
Apr 2015	Upsilon Pi Epsilon: International Honor Society for the Computing and Information Disciplines <i>Wake Forest University</i>
Apr 2014	Pi Mu Epsilon: International Honor Society for Mathematics Wake Forest University

Publications

- Lockhart, S., Bienz, A., Gropp, W. & Olson, L. Characterizing the Performance of Node-Aware Strategies for Irregular Point-to-Point Communication on Heterogeneous Architectures. *Parallel Computing* (Apr. 2023).
 - 2. Lockhart, S., Bienz, A., Gropp, W. & Olson, L. Performance Analysis and Optimal Node-Aware Communication for Enlarged Conjugate Gradient Methods. *ACM Trans. Parallel Comput.* **10** (Mar. 2023).

2022	3.	Lockhart, S. , Gardner, D. J., Woodward, C. S., Thomas, S. & Olson, L. N. <i>Performance of Low Synchro-</i> <i>nization Orthogonalization Methods in Anderson Accelerated Fixed Point Solvers in Proceedings of the 2022</i> <i>SIAM Conference on Parallel Processing for Scientific Computing</i> (2022), 49–59.
2021	4.	Bienz, A., Olson, L. N., Gropp, W. D. & Lockhart, S. Modeling Data Movement Performance on Heterogeneous Architectures in 2021 IEEE High Performance Extreme Computing Conference (HPEC) (2021), 1–7.
2019	5.	Karlin, I., Park, Y., de Supinski, B. R. & et al. (including Shelby Lockhart). <i>Preparation and Optimization of a Diverse Workload for a Large-Scale Heterogeneous System</i> in <i>Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis</i> (Association for Computing Machinery, Denver, Colorado, 2019).
2017	6.	Adhikari, L., DeGuchy, O., Erway, J. B., Lockhart, S. & Marcia, R. F. <i>Limited-memory trust-region methods for sparse relaxation</i> in <i>Wavelets and Sparsity XVII</i> (eds Lu, Y. M., Ville, D. V. D. & Papadakis, M.) 10394 (SPIE, 2017), 95–102.

Presentations

Apr 2023	Sydney Fernbach Fellowship Finalist Technical Seminar, LLNL, Livermore, CA, USA Communication Reduction Strategies for Scalable Iterative Solvers
Apr 2023	Rising Stars in Computational and Data Sciences , Austin, TX, USA Reducing Communication Costs in Scalable Iterative Solvers
Feb 2023	SIAM Conference on Computational Science and Engineering (CSE23) , Amsterdam, Netherlands Anderson Acceleration on Emerging Architectures
Oct 2022	Center for Exascale-enabled Scramjet Design PSAAP Annual Review , Urbana, IL, USA Data Movement Modeling
Apr 2022	17th Copper Mountain Conference on Iterative Methods, Virtual Reducing Communication Costs in ECG with Optimal Node-Aware Communication
Apr 2022	Center for Exascale-enabled Scramjet Design PSAAP TST Meeting , Urbana, IL, USA Data Movement Modeling
Feb 2022	SIAM Conference on Parallel Processing for Scientific Computing Conference Proceedings , Virtual Performance of Low Synchronization Orthogonalization Methods in Anderson Accelerated Fixed Point Solvers
May 2021	ASC PI Meeting 2021 , Virtual Modeling Data Movement on Heterogeneous Architectures
Feb 2020	SIAM Conference on Parallel Processing for Scientific Computing Poster Session , Seattle, WA, USA Multi-Step Communication in Enlarged Krylov Subspace Solvers
Apr 2019	9th JLESC Workshop , Knoxville, TN, USA Designing Scalable Solvers for Enlarged Krylov Subspace Methods
Aug 2018	LLNL Summer Student Poster Symposium , Livermore, CA, USA Increasing the Portability of SUNDIALS with OpenMP 4.5

Significant Codebase Contributions

RAPtor: parallel algebraic multigrid solver	Implementation of block vector operations, <i>enlarged</i> Krylov methods, and <i>Split</i> optimal node-aware communication.
SUNDIALS	Implementation of an OpenMP 4.5 N_Vector for increased portability of the SUNDI-ALS software stack, as well as, low synchronization orthgonalization routines for use within Anderson acceleration in the KINSOL package.
BenchPress	High-volume ping-pong MPI benchmarking tests.

Other Work Experience

Dept. of Mathematics at Wake Forest University , Winston-Salem, NC, USA Aug 2014 - May 2016 <i>Math Center Tutor</i>	Supervisor: Jules Connolly
Tutored in 9 undergraduate mathematics courses	
 Best Choice Center, Winston-Salem, NC, USA Aug 2012 - Dec 2014 Middle School Tutor Tutored in an after-school program for low-income families 	Supervisor: Mildred Houser

Technical Skills

Programming Languages	C, C++, Python, MATLAB
Code Management	Make, CMake, bash, vim, git, GoogleTest, pytest, Travis CI, Spack
Debugging and Profilling	GDB, Valgrind, NVIDIA Visual Profiler, HPCToolkit, TAU
Parallel and Distributed Computing	 MPI, CUDA, OpenMP (including OpenMP with device-offloading), mpi4py Familiarity with PyOpenCL and PyCuda Extensive experience developing portable software on various large-scale HPC platforms Extensive experience benchmarking and modeling MPI communication performance on large-scale HPC platforms
Scientific Libraries	SUNDIALS, hypre, MFEM, PETSc, XBraid, LAPACK, cuSPARSE, NumPy, SciPy
Operating Systems	macOS, Unix, Linux, Microsoft Windows
Machine Learning	Working knowledge of PyTorchKnowledge of distributed deep learning and related parallelization techniques
Documentation	断EX, TikZ, Beamer, Keynote, Microsoft Office

Other Relevant Skills

Communication	• Collaborate well with teams of diverse backgrounds and technical expertise
	• Ability to communicate objectives and importance of technical work to both
	technical and non-technical audiences

Project Management	 Ability to manage research projects and coordinate within a remote-working environment Effective at designing and adhering to project timelines and deliverables
Research and Analysis	 Problem solving, the ability to break down complex problems into manageable tasks Critical thinking skills, such as the ability to analyze the impact of hardware configurations on software performance and develop software optimization strategies

Service

2023	ExaMPI23: Workshop on Extreme Scale MPI Committee Member, SC23
2022 - 2023	Community Outreach , Participated in discussion panels at elementary schools in the Urbana- Champaign, IL community
2019 - 2020	SIAM Student Chapter President, University of Illinois at Urbana-Champaign, IL, USA
2017 - 2018	SIAM Student Chapter Officer, University of Illinois at Urbana-Champaign, IL, USA

Memberships

Society for Industrial and Applied Mathematics (SIAM)Women in High Performance Computing (WHPC)Association for Computing Machinery (ACM)Association for Women in Mathematics (AWM)Institute of Electrical and Electronics Engineers (IEEE)Electronics Engineers (IEEE)

Professional References

Luke N. Olson

University of Illinois at Urbana-Champaign

- Email: lukeo@illinois.edu
- Website: https://lukeo.cs.illinois.edu

Carol S. Woodward

Lawrence Livermore National Laboratory

- Email: woodward6@llnl.gov
- Website: https://people.llnl.gov/woodward6

Amanda Bienz

University of New Mexico

- Email: bienz@unm.edu
- Website: https://www.amandabienz.com

William D. Gropp

University of Illinois at Urbana-Champaign

- Email: wgropp@illinois.edu
- Website: https://wgropp.cs.illinois.edu/

Stephen Thomas

Advanced Micro Devices, Inc

- Email: stephethomas@gmail.com
- Website: https://www.linkedin.com/in/stevethomas-ob23175